97 research outputs found

    On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea

    Get PDF
    17 USC 105 interim-entered record; under review.The article of record as published may be found at https://doi.org/10.5194/os-18-29-2022Substantial amounts of nutrients and carbon enter the Arctic Ocean from the Pacific Ocean through the Bering Strait, distributed over three main pathways. Water with low salinities and nutrient concentrations takes an eastern route along the Alaskan coast, as Alaskan Coastal Water. A central pathway exhibits intermediate salinity and nutrient concentrations, while the most nutrient-rich water enters the Bering Strait on its western side. Towards the Arctic Ocean, the flow of these water masses is subject to strong topographic steering within the Chukchi Sea with volume trans port modulated by the wind field. In this contribution, we use data from several sections crossing Herald Canyon collected in 2008 and 2014 together with numerical modelling to investigate the circulation and transport in the western part of the Chukchi Sea. We find that a substantial fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. This water then contributes to the high nutrient waters of Herald Canyon. The bottom of the canyon has the highest nutrient concentrations, likely as a result of addition from the degradation of organic matter at the sediment surface in the East Siberian Sea. The flux of nutrients (nitrate, phosphate, and silicate) and dissolved inorganic carbon in Bering Summer Water and Winter Water is computed by combining hydrographic and nutrient observations with geostrophic transport referenced to lowered acoustic Doppler current profiler (LADCP) and surface drift data. Even if there are some general similarities between the years, there are differences in both the temperature–salinity and nutrient characteristics. To assess these differences, and also to get a wider temporal and spatial view, numerical modelling results are applied. According to model results, high-frequency variability dominates the flow in Herald Canyon. This leads us to conclude that this region needs to be monitored over a longer time frame to deduce the temporal variability and potential trends.The science was financially supported by: US National Science Foundation (Grant Number: GEO/PLR ARCSS 575 IAA#1417888), the Department of Energy (DOE) Regional and Global Model Analysis (RGMA), the Swedish Research Council Formas (contract no. 2018-01398), and the Swedish Research Council (contract nos. 621-2006-3240, 621-2010-4084, and 2012-1680). This work was carried out with logistic support from the Knut and Alice Wallenberg Foundation and from Swedish Polar Research Secretariat. The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources. This study was also supported by the Russian Scientific Foundation (grant no. # 21-77-580 30001).The science was financially supported by: US National Science Foundation (Grant Number: GEO/PLR ARCSS 575 IAA#1417888), the Department of Energy (DOE) Regional and Global Model Analysis (RGMA), the Swedish Re search Council Formas (contract no. 2018-01398), and the Swedish Research Council (contract nos. 621-2006-3240, 621-2010-4084, and 2012-1680). This work was carried out with logistic support from the Knut and Alice Wallenberg Foundation and from Swedish Polar Research Secretariat. The Department of Defense (DOD) High Performance Computer Modernization Program (HPCMP) provided computer resources. This study was also supported by the Russian Scientific Foundation (grant no. # 21-77-580 30001)

    Decreased soil moisture due to warming drives phylogenetic diversity and community transitions in the tundra

    Get PDF
    Global warming leads to drastic changes in the diversity and structure of Arctic plant communities. Studies of functional diversity within the Arctic tundra biome have improved our understanding of plant responses to warming. However, these studies still show substantial unexplained variation in diversity responses. Complementary to functional diversity, phylogenetic diversity has been useful in climate change studies, but has so far been understudied in the Arctic. Here, we use a 25 year warming experiment to disentangle community responses in Arctic plant phylogenetic β diversity across a soil moisture gradient. We found that responses varied over the soil moisture gradient, where meadow communities with intermediate to high soil moisture had a higher magnitude of response. Warming had a negative effect on soil moisture levels in all meadow communities, however meadows with intermediate moisture levels were more sensitive. In these communities, soil moisture loss was associated with earlier snowmelt, resulting in community turnover towards a more heath-like community. This process of 'heathification' in the intermediate moisture meadows was driven by the expansion of ericoid and Betula shrubs. In contrast, under a more consistent water supply Salix shrub abundance increased in wet meadows. Due to its lower stature, palatability and decomposability, the increase in heath relative to meadow vegetation can have several large scale effects on the local food web as well as climate. Our study highlights the importance of the hydrological cycle as a driver of vegetation turnover in response to Arctic climate change. The observed patterns in phylogenetic β diversity were often driven by contrasting responses of species of the same functional growth form, and could thus provide important complementary information. Thus, phylogenetic diversity is an important tool in disentangling tundra response to environmental change.This study was supported by The Swedish Research Council FORMAS (No. 942-2015-1382 to RGB and 2016-01187 to MPB), The Swedish Research Council (No. 621-2014-5315 to RGB and No. 2015-04857 to AA), the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (No: 657627 to MPB), BECC—Biodiversity and Ecosystem services in a Changing Climate, the Swedish Foundation for Strategic Research (AA), the Royal Botanic Gardens, Kew (AA), Qatar Petroleum (JMA), and Carl Tryggers Stiftelse för Vetenskaplig Forskning (JMA and MPB)

    Vegetation type, not the legacy of warming, modifies the response of microbial functional genes and greenhouse gas fluxes to drought in oro-arctic and alpine regions

    Get PDF
    Climate warming and summer droughts alter soil microbial activity, affecting greenhouse gas (GHG) emissions in arctic and alpine regions. However, the long-term effects of warming, and implications for future microbial resilience, are poorly understood. Using one alpine and three arctic soils subjected to in situ long-term experimental warming, we simulated drought in laboratory incubations to test how microbial functional-gene abundance affects fluxes in three GHGs: carbon dioxide, methane, and nitrous oxide. We found that responses of functional gene abundances to drought and warming are strongly associated with vegetation type and soil carbon. Our sites ranged from a wet, forb dominated, soil carbon-rich systems to a drier, soil carbon-poor alpine site. Resilience of functional gene abundances, and in turn methane and carbon dioxide fluxes, was lower in the wetter, carbon-rich systems. However, we did not detect an effect of drought or warming on nitrous oxide fluxes. All gene-GHG relationships were modified by vegetation type, with stronger effects being observed in wetter, forb-rich soils. These results suggest that impacts of warming and drought on GHG emissions are linked to a complex set of microbial gene abundances and may be habitat-specific

    A review of open top chamber (OTC) performance across the ITEX Network

    Get PDF
    Open top chambers (OTCs) were adopted as the recommended warming mechanism by the International Tundra Experiment (ITEX) network in the early 1990’s. Since then, OTCs have been deployed across the globe. Hundreds of papers have reported the impacts of OTCs on the abiotic environment and the biota. Here we review the impacts of the OTC on the physical environment, with comments on the appropriateness of using OTCs to characterize the response of biota to warming. The purpose of this review is to guide readers to previously published work and to provide recommendations for continued use of OTCs to understand the implications of warming on low stature ecosystems. In short, the OTC is a useful tool to experimentally manipulate temperature, however the characteristics and magnitude of warming varies greatly in different environments, therefore it is important to document chamber performance to maximize the interpretation of biotic response. When coupled with long-term monitoring, warming experiments are a valuable means to understand the impacts of climate change on natural ecosystems

    The tundra phenology database: more than two decades of tundra phenology responses to climate change

    Get PDF
    Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collection of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1\u201326 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215)

    Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis

    Get PDF
    Centro de Biotecnología y Genómica de Plantas (CBGP)The evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid, salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyse the physiological role of AMIDASE 1 (AMI1) in Arabidopsis plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalysing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plant's stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including jasmonic acid and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin and ABA homeostasis.This research was supported by grants from the German Research Foundation (DFG, SFB480/A10) and the Spanish Ministry of Economy, Industry and Competitiveness (MINECO, BFU2017-82826-R to SP and a grant from the Swedish Research Council (VR) to HA. JM was supported by the ‘Severo Ochoa Program for Centers of Excellence in R&D’ from the Agencia Estatal de Investigación of Spain, grant SEV-2016-0672 (2017-2021) to the CBGP.Peer reviewed17 Pág
    corecore